# Preliminary insights from numerical simulations and observational analysis of precipitating cumulus congestus observed during MC3E

David B. Mechem<sup>1</sup>, Scott Giangrande<sup>2</sup>, Carly S. Fish<sup>1</sup>, Paloma Borque<sup>3</sup>, and Pavlos Kollias<sup>3</sup>

<sup>1</sup>Atmospheric Science Program Department of Geography University of Kansas

<sup>2</sup>Atmospheric Sciences Division Brookhaven National Laboratory

<sup>3</sup>Department of Atmospheric and Oceanic Sciences McGill University

DOE ASR CLWG Rockville, MD 4–8 November 2013

We acknowledge support from the Department of Energy Office of Science

### MC3E cumulus congestus case

### Motivation:

- The recently-deployed ARM radars require innovative approaches to take advantage of their capabilities (high temporal and spatial resolution; spectra)
- LES with bin microphysics is one such approach
- Bring process modelers and observationalists together

### Objective:

Employ a case of shallow precipitating cloud observed during MC3E to flesh out some of these ideas

# MC3E 25 May 2011



# CSAPR view of showery, postfrontal, shallow convection



### Tendencies (forcing) from variational analysis



Time-varying forcing 1200 UTC, fixed forcing 1500 UTC, fixed forcing 1800 UTC, fixed forcing 2100 UTC, fixed forcing

Time-varying forcing, 150-km scale

# CSAPR view of showery, postfrontal, shallow convection



# LES with size-resolving (bin) microphysics

System for Atmospheric Modeling (SAMEX) — Explicit Microphysics; Khairoutdinov and Randall (2003); microphysics based on Kogan (1991)

- MC3E 25 May 2011
- Variational analysis supplies tendencies of temperature and moisture, large-scale vertical motion, and surface fluxes
- Size-resolved ("bin" or "explicit") microphysics
- 34 (36) droplet bins; 19 CCN bins
- Initial CCN ~425/cc
- Reflectivity calculated directly from DSD

Domain: 38.4 x 38.4 x 8 km<sup>3</sup>

- dx = dy = 100 m
- dz = 50 m
- Grid: 384x384x160, run for 9 h

### Evolution of simulated reflectivity



Evolution of cloud macrophysical properties



# Evolution of reflectivity distribution



# Evolution of reflectivity distribution — influence of scale



# **Preliminary conclusions**

- Evolution of cloud macrophysical properties generally consistent with what would be expected from the forcing
- Cloud field surprisingly resilient to the modest changes in the forcing across the simulations
- Indications of self-limiting precipitation behavior across the simulation suite
- •Combination of 3-h forcing interval and idealized model framework may limit how well model results can match observations in rapidly evolving synoptic conditions.